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Abstract
We present experimental evidence from 103Rh nuclear spin–lattice relaxation
rates that small (average diameter 2.6 nm) supported Rh particles show
antiferromagnetic susceptibility enhancement at temperatures below 80 K.
Slightly larger particles (3.6 nm) have a density of states at the Fermi level
on surface sites that is higher than that in the bulk.

1. Introduction

In pure bulk metals, magnetism is found only in the 3d row of the periodic system, from Cr to
Ni. Bulk alloys of ‘nonmagnetic’ elements can be magnetic: ZrZn2 has a Curie temperature
of 18 K. Nonbulk forms of 4d and 5d metals can also be magnetic, either due to surface effects
as in films [1] or because of size effects, as in atomic clusters [2]. Metallic paramagnetism can
also be modified by surface and size effects. These modifications are often studied using the
nuclear magnetic resonance (NMR) technique [3], to avoid the background effects that can be
problematic in measurements of the static magnetic susceptibility. Early attempts to detect the
paramagnetic quantum size effect [4] have used 63Cu NMR of small copper particles embedded
in a matrix [5, 6]. Slichter and co-workers [7] have shown that the particle size dependence
of the 195Pt NMR spectrum of small supported platinum particles should be interpreted as a
surface effect rather than a size effect. Such systems are models for heterogeneous catalysts,
and therefore they have been studied extensively by means of NMR [8].

From the values of Knight shift and relaxation rate of those 195Pt nuclei that are in (or
near to) the particle surface, it has been deduced that the local susceptibility in the surface
layer is lower than that of the bulk, while the bulk value is retrieved about three atomic layers
deep [9]. At least qualitatively, this agrees with calculations for a five-layer platinum film [10].
Bulk palladium has a strongly Stoner-enhanced Pauli susceptibility [11] and is considered a
nearly ferromagnetic metal [12], but the calculated local density of states (LDOS) at the Fermi
energy on its surfaces is less than in the bulk [13–15]. Like for platinum therefore, the local

0953-8984/02/307135+11$30.00 © 2002 IOP Publishing Ltd Printed in the UK 7135

stacks.iop.org/JPhysCM/14/7135


7136 S Burnet et al

susceptibility at the surface of palladium is expected to be less than in the bulk. The calculated
Stoner enhancement for bulk rhodium is rather small [11], but the calculated surface LDOS
is larger than the bulk value [15, 16]. The experimental situation is not quite clear [17], but
suggests that the Rh(100) surface shows superparamagnetism or some extremely unstable
two-dimensional ferromagnetic order. In rhodium clusters of up to roughly a hundred atoms,
size-dependent magnetism has been found both experimentally [18] and in calculations [15].

The incipient magnetic structure of a paramagnetic system is best described by its
wavevector-dependent susceptibility χ̃(q). In this respect, calculations give distinct results
for bulk Pd and bulk Rh [19–21]. The χ̃(q) of Pd peaks strongly at zero wavevector and
decays monotonically for larger q, characteristic for an incipient ferromagnet. The calculated
q = 0 enhancement in Rh is clearly weaker than that in Pd;but there is a rather strong secondary
maximum that corresponds to a tendency towards antiferromagnetic ordering.

In this paper we use the NMR of 103Rh of small supported rhodium particles to study some
of these issues. For large enough particle sizes, there should be mainly ‘surface’ effects, like in
the platinum case. Smaller particles could show magnetic ‘size’ effects. As a prerequisite for
the data analysis, we give a brief review of spin fluctuation theory as applied to NMR and we
deduce a number of parameter values from bulk 103Rh NMR data. To mark the peculiarities
of Rh, we make occasional comparisons with the properties of Pd.

2. Theory

The theory of the NMR of paramagnetic metals [3, 22] is based on the local density
approximation of the density functional theory for the low-frequency limit of the complex
nonlocal spin susceptibility of the inhomogeneous electron gas χ(r, r′; ω) [11, 23–26]. That
susceptibility can be written in the form of an integral equation:

χ(ρ,ρ′ + Rα; ω) = χP(ρ,ρ′ + Rα; ω)

+
N∑

β=1

∫
cell

χP(ρ,ρ1 + Rβ; ω)ν(n(ρ1 + Rβ))χ(ρ1 + Rβ,ρ′ + Rα; ω) dρ1, (1)

where ν(n(r)) is related to a second derivative of the exchange–correlation energy, and is (in
the local-density approximation) a function only of the charge density n at r. The quantity
χP(ρ,ρ′ + Rα; ω) is the ‘noninteracting’ Pauli susceptibility. The vectors ρ′ and ρ1 are in the
unit cell at the origin, and Rα and Rβ are lattice vectors. N is the number of unit cells.

The dependence of χ on N lattice vectors in real space can be replaced by a dependence
on N vectors qα in the reciprocal lattice through the Bloch Fourier transform:

χ̃ (ρ,ρ′; qα; ω) =
N∑

β=1

exp(iqα · Rβ)χ(ρ,ρ′ + Rβ; ω). (2)

The ν(n(r)) that appears in equation (1) creates simultaneously the Stoner enhancement of
the susceptibility, the core-polarization hyperfine fields, and the disenhancement factor in the
spin–lattice relaxation rate [22]. Here we are mainly interested in the general expression for
the relaxation rate:

S(T1T )−1 = µ0

4π

(
4µB

3

)2 2

N

N∑
α=1

χ̃ ′′(ρ,ρ; qα; ωS − ωI )

h̄(ωS − ωI )
, (3)

where S = (2µB)2/(4π h̄kγ 2), and ωS and ωI are the electronic and nuclear Larmor
frequencies. The imaginary part of the susceptibility χ ′′ is an odd function of frequency, and
linear for small values of ω. The right-hand side of equation (3) is then frequency independent
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and can be evaluated in the limit of vanishing frequencies. The position in the unit cell of the
nucleus under consideration is given by the vector ρ.

Starting from equation (1), the static susceptibility, the Knight shift, and the relaxation
rate for transition metals can be decomposed approximately into sums of s- and d-like
contributions [22, 27], to which an additional orbital term [28] must be added:

χ = µ0µ
2
B�−1

(
Ds(Ef)

1 − αs
+

Dd(Ef)

1 − αd

)
+ χorb = χs + χd + χorb (4)

K = �

µ0µB
(χs Bhf,s + χd Bhf,d + χorb Bhf,orb) = Ks + Kd + Korb (5)

S(T1T )−1 = ksK 2
s + kd K 2

d Rd + (µB Dd Bhf,orb)
2 Rorb, (6)

where � is the atomic volume; Ds and Dd are densities of states at the Fermi energy Ef ; αs

and αd are Stoner enhancement factors; the Bhf are effective hyperfine fields (including core
polarization); ks and kd are Moriya disenhancement factors; and Rd and Rorb are reduction
factors related to the decomposition of Dd into contributions of different symmetries Dt2g

and Dte . The three densities of states Ds(Ef), Dt2g(Ef) and Deg(Ef) can be found from
band-structure calculations, and the d-like hyperfine field can sometimes be determined by
experiment. The αl(l = s, d) are treated as fittable parameters. It is usually assumed that
kl can be calculated from some l-independent function of the Stoner parameter k(α); thus
kl = k(αl). We have often used the Shaw–Warren result [29], that can be fitted to

kWS(α) = (1 − α)(1 + 1
4α), (7)

while the k(α) relation of the original Moriya equation [30, 31] can be approximately
represented as

kM(α) = (1 − α)(1 + 5
3 α2). (8)

For strongly enhanced paramagnets, K and/or T1T may become temperature dependent
through spin fluctuations. Below, we summarize how these temperature dependences are
expected to differ for ferromagnetic and antiferromagnetic enhancements. These theories have
been developed for the homogeneous electron gas [32, ch 5], and we will give the relevant
quantities an index h.

2.1. Paramagnets with ferromagnetic spin fluctuations

These are systems that show a strong temperature dependence of the uniform static
susceptibility, but that nevertheless remain paramagnetic. The paramagnetic phase of low-
TC ferromagnets can be described by the same theory. In addition to an exchange parameter
νh, spin fluctuation theory introduces a function δ(T ), such that the temperature-dependent
susceptibilities in a ferromagnetically enhanced paramagnet are given by

χ̃h(q, T ) = 1

νh

χ̃P,h(q)

(δ(T ) + 1)χ̃P,h(0) − χ̃P,h(q)
. (9)

The Stoner enhancement factor is related to the exchange parameter and the q = 0 static
susceptibility through

αh = νhχ̃
′
P,h(0; ω = 0) (10)

and to the low-temperature limit of δ(T ) by

lim
T →0

δ(T ) = 1 − αh

αh
. (11)
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The inverse of the static uniform susceptibility, as in equation (4), is

χ−1
h (T ) = �−1νhδ(T ). (12)

At low temperatures the usual Stoner-enhanced susceptibility is retrieved because of
equation (11). At higher temperatures the usual Curie–Weiss behaviour implies that

δ(T ) ∝ T − TC (13)

and the cases of interest to us are close to the limit TC → 0.
According to equation (12) the Knight shift becomes temperature dependent, and from

equations (3) and (9) the spin–lattice relaxation rate is given by equation (14a) below:

S(T1T )−1
h = 2(�Bhf)

2

πµ0

�

(2π)3

∫
χ̃ ′′

P,h(q; ω)

h̄ω

δ(T ) + 1

αh

(
1

δ(T ) + 1 − F(q)

)2

dq (14a)

≈ S(T1T )−1
P,h

δ(T ) + 1

αh

〈
1

δ(T ) + 1 − F(q)

〉2

FS

(14b)

≈ S(T1T )−1
P,h

(
1 + 5

3 (δ(T ) + 1)−2)χh(T )/χP,h, (14c)

where F(q) is the Lindhard function. The angular brackets in equation (14b) indicate an
average over vectors q that connect two points on the spherical Fermi surface. The expression
within large parentheses in equation (14c) comes from the approximation in equation (8). It is
usually assumed that the main temperature dependence of T1T is contained in the factor χh(T ),
which for an incipient ferromagnet is ∝1/T . The result is a T1 independent of temperature,
and a Knight shift K ∝ χh(T ) ∝ 1/T . The low-temperature limit of equation (11) introduces
the Moriya disenhancement factor of equation (8) into (14c):

(T1T )−1
h = (T1T )−1

P,hkM(αh). (14d)

2.2. Paramagnets with antiferromagnetic spin fluctuations

In antiferromagnetic systems, the static paramagnetic susceptibility has its maximum at an
ordering vector Q �= 0. A moderate tendency towards antiferromagnetism has been found
in calculations for bulk rhodium, where a secondary maximum in χ̃(q) appears at a nonzero
wavevector [20], the absolute maximum remaining at q = 0. In the NMR of the paramagnetic
state of antiferromagnets a situation can arise where T1 is dominated by χ̃ ′′(Q), whereas the
Knight shift is determined by χ̃ ′(0). In that case, there exists no equivalent of the k(α) relation
as in equations (7) or (8), since the α in K refers to q = 0, and that in T1 to Q.

There is no closed expression, analogous to equation (14a), for the spin–lattice relaxation
in antiferromagnetically enhanced paramagnets. Still the temperature dependence of T1T can
be estimated in the following way. The starting assumption is that, because of the enhancement,
χ̃ ′′ is strongest around a wavevector Q different from zero, and that around that wavevector it
can be expanded as

χ̃ ′′(Q + q; ω)

h̄ω
= C ′

νQ(δQ(T ) + A′q2)2
, (15)

where C ′ and A′ are coefficients of the expansion, and νQ and δQ(T ) are analogous to the
quantities in ferromagnetic fluctuations theory. The sum in equation (3) is converted into an
integral over a spherical volume equivalent to a Brillouin zone centred at Q, of radius qB such
that q3

B = 6π2/�, so (T1T )−1 is proportional to

∫ qB

q=0

4πq2

νQ(δQ(T ) + A′q2)2
dq =




π2

A′νQ
√

A′δQ(T )
for δQ → 0

2πq3
BνQ χ̃ ′2

P (Q) for νQ → 0.

(16)
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In the weak-enhancement limit, νQ → 0, T1T is independent of T , as expected. In the limit
of a strong antiferromagnet, δQ → 0, we have

T1T ∝ √
δ(T ) ∝ √

T − TN (17)

and for an incipient antiferromagnet, TN → 0, the resulting relaxation rate is proportional to
the square root of temperature.

The detection of antiferromagnetic enhancement by means of NMR is usually based
on qualitative arguments. At low temperature the Knight shift is temperature independent,
whereas T1T is not. The experimental relaxation rate T −1

1 (T ) is fitted to

T −1
1 = aT + bT 1/2. (18)

The term ∝T is attributed to the term ∝Bhf,orb in equation (6). It is usually impossible
to give a quantitative interpretation of the value of the parameter b. A recent example
of antiferromagnetic spin fluctuations seen by means of NMR is provided by the 59Co in
Zr2(Co1−x Nix) compounds [33].

3. Experimental details

We have studied four samples of small Rh particles using NMR. A first sample, denoted
Rh/TiO2, is one that was used previously [34] (average diameter 3.6 nm, dispersion 26%).
A second one, Rh/PVP, has been prepared by the method described earlier [34], but with
double the metal loading (i.e. 20% by weight) of the sample in that reference. The size
distribution determined from transmission electron microscopy (TEM) is very similar (average
diameter 3.0 nm, dispersion 37%) to that of the earlier sample, and the NMR spectra are
indistinguishable. Two further samples were prepared by an impregnation method similar to
that used for Rh/TiO2, except that two different aluminas were used as carriers. A sample
containing 20% by weight of Rh was prepared on RP3 alumina (Rhône-Poulenc). Its average
diameter, as determined from TEM, is 2.6 nm, and the dispersion calculated from the size
histogram is 40%. From a hydrogen adsorption isotherm at 318 K and assuming a 1:1
stoichiometry, its dispersion was found as 35%. The other sample was prepared on GSF400
alumina (Rhône-Poulenc) and has 4% loading. Its size distribution is difficult to measure by
TEM; we have used small-angle x-ray scattering to estimate the average diameter as 1.5 nm
and the dispersion as 54%. The approximate number of atoms in particles with the average
diameter is 1800 for Rh/TiO2, 1000 for Rh/PVP, 670 for Rh/RP3, and 130 for Rh/GSF400.

The NMR equipment was very similar to that described before [34], its main feature being
a 14 T magnet with an incorporated sample cryostat (Oxford Instruments).

4. Results and discussion

4.1. NMR of bulk Rh compared to Pd

Bulk rhodium has the same fcc structure as palladium, its neighbour in the periodic system,
and roughly the same density of states (DOS) curve, but a lower D(Ef ) and a moderate Stoner
enhancement [11, 15]. While between 150 and 1500 K the bulk susceptibility of Pd decreases
according to a Curie–Weiss law, the susceptibility of Rh increases monotonically with T from
the lowest temperatures studied up to at least 1500 K [35]. The increase is of the order of
half the average value. For comparison, the s-spin susceptibility of silver, the other neighbour
of palladium, increases by something like 1/15 of the average value between 10 [36] and
1360 K [37], as measured from the 109Ag NMR shift.
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Table 1. Fitted values of partial contributions to the susceptibility, the Knight shift, and the
relaxation rate of 103Rh in rhodium metal. The next four rows give the parameters used: hyperfine
fields Bhf , reduction factors R, exchange integrals I , and densities of states D(Ef). The molar
volume Vm = 8.30 cm3. For χcgs in µemu mol−1, multiply the table body entries by Vm/(4π).

s d Orb Dia Sum Experiment

χ (10−6) 2.5 130.6 71.2 −59.7 144.6 143.8
K (10−3) 0.60 −5.25 8.42 3.76 3.75
(T1T )−1 (10−3 s−1 K−1) 1.3 11.6 96.9 109.8 111.5
Bhf (T) 200 −34 100
R 0.20 0.44
I (mRyd) 0 28
D(Ef) (Ryd−1) 0.7 18.0 18.7

For both 105Pd [38] and 103Rh [39] the Knight shift data up to room temperature track the
susceptibility. For 105Pd this proportionality has been used to determine Bhf,d, but for 103Rh it
has been argued [39, 40] that it cannot be the χd alone that varies with temperature, because that
would imply an unusually small d-like hyperfine field. Between 150 K and room temperature
the T1T for 105Pd decreases slightly and this variation has been fitted to a spin fluctuation
expression [41] similar to equation (14c). The relaxation data for 103Rh have not been analysed
in comparable detail.

The Knight shift of bulk Rh is nearly temperature independent up to 100 K and then
decreases (becomes less positive) going to room temperature. We find the metal resonance at
low temperatures at 1.343 73(5) MHz T−1, in excellent agreement with the literature value of
1.343 74(3) MHz T−1 [40]. But because we use another reference frequency [3], we give the
corresponding Knight shift as K = 3.75 × 10−3, instead of 4.3 × 10−3. At 280 K, we have
K = 3.57 × 10−3. Between 15 and 200 K, we find the relaxation rate linear in temperature,
with T1T = 8.97(5) s K, in agreement with the earlier result 9 s K at helium temperatures [40].

These low-temperature NMR data for bulk Rh can be fitted by the usual equations (4)–
(7); see table 1. In this fit, the diamagnetic susceptibility of Rh was set equal to that of Ag
(−39.4 µemu mol−1 in cgs units), as calculated from the total experimental susceptibility of
silver (−19.5 µemu mol−1) and its spin susceptibility as determined from 109Ag NMR [3]
(19.9 µemu mol−1). The reduction factors R were set to equal occupancy for all five types
of d orbital, and a term 1/25 was added to Rorb to account for dipolar relaxation [28]. Since
Ds(Ef) is low anyway, the corresponding exchange integral Is = αs/Ds(Ef) was set to zero;
for the same reason the s-like hyperfine field was simply set to a plausible value, the fitted
value for Pd [3]. The d-like hyperfine field was constrained to be between zero and the value
determined experimentally for Pd [38]. The orbital susceptibility and hyperfine field were
constrained to be comparable to calculated values [42]. The d-like exchange integral Id was
constrained to yield a moderate susceptibility enhancement. The fitted enhancement factor
is 2.02, in reasonable agreement with a calculated value of 1.79 [11]. The parameter values
obtained here are somewhat different from those in the preliminary analysis proposed in [34].
The latter unfortunately contains numerical errors and is therefore inconsistent.

4.2. 103Rh spectra of small rhodium particles

The 103Rh spectra for the four small-particle samples are shown in figure 1. In principle,
nuclei in noncubic sites (e.g. in the surface) have anisotropic Knight shifts, that give rise to
powder lineshapes with characteristic shoulders [43]. Such features do not show up here,
presumably because the site-to-site variation of the shift is larger than the difference in shift
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(c)
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(d)
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Figure 1. Point-by-point 103Rh NMR spectra for clean-surface Rh particles of different sizes on
different supports, taken at 80 K. The spectra are normalized to the same area. The samples are
(a) Rh/TiO2, (b) Rh/PVP, (c) Rh/RP3, (d) Rh/GSF400. The dotted curve in (c) shows the effect of
chemisorption of a monolayer of hydrogen. On this scale, the width of the bulk Rh resonance is
comparable to the line thickness.

tensor elements on a single site. All spectra in figure 1 are approximately centred at the
bulk resonance position, and broaden rather symmetrically when the particle size decreases.
Chemisorption of hydrogen has a measurable, but rather small effect; figure 1(c). These
spectral characteristics are markedly different from those of small platinum particles [9, 44],
where the intensity in the 195Pt spectra shifts from the bulk resonance position to zero Knight
shift (the ‘surface resonance’ position) when the particle size diminishes and where the spectral
shape changes qualitatively when hydrogen is adsorbed.

There are two reasons for this different behaviour: one related to the NMR of Rh metal,
the other related to the electronic structure of the Rh surface. According to table 1, the Knight
shift and the relaxation rate of bulk Rh are dominated by the orbital parts, with additional
contributions from the spins of the d-like electrons, and negligible s-like parts. This is very
different from the cases for Pt or Pd, where the d-like spin part dominates, and the orbital parts
are nearly negligible [3]. For small particles of Pt (and presumably also of Pd), the magnetic
behaviour can be reasonably well described by considering only the site-to-site variation of
the d-like spin part, and as it happens this part of the susceptibility is measurably smaller on
surface sites than in the bulk. For that reason, a ‘layer model’ [9, 45] is successful for Pt
(and probably would also be for Pd, if the experiment could be done). From calculations for
a rhodium slab [16] the site-to-site variation of the 103Rh (spin) Knight shift is expected to
be comparatively small: therefore the spectral shapes in figure 1 are probably dominated by
competition between (positive) orbital shifts and (negative) spin shifts. On some surface sites
the net result is negative, on others positive; therefore no clear surface signal can be found in
the spectra. From calculations for the fcc(111) surfaces for Pd and Rh [14] it is found that



7142 S Burnet et al

hydrogen has markedly less influence on D(Ef) at surface sites on rhodium than on palladium.
It is believed that in this respect Pt behaves as Pd, which would explain why the 195Pt spectral
shape shows large qualitative changes upon hydrogen adsorption, whereas the 103Rh spectrum
in figure 1(c) only shows a small shift (by about 14 kHz or 740 ppm, to higher field).

4.3. Spin–lattice relaxation of 103Rh in small particles

In 195Pt NMR of clean-surface particles the relaxation rate at a given resonance position is
independent of support or particle size [8] (with the exception of zeolite carriers). Therefore
Pt nuclei in different samples that resonate at the same spectral position are in very similar
environments. Such a simple identification of atomic environment with spectral position cannot
be made for Rh particles: at the same resonance position, we can find very different relaxation
rates.

In the sample with the largest particles, Rh/TiO2, the value of T1T is roughly the same
at 80 and 20 K for several spectral positions; see figures 2(a), (b). Assume for the sake of
argument that the full line in figure 2(b) correctly represents the spectral variation of the product
T1T . It is nowhere larger than the bulk value and, the contribution of Ds(Ef) to the relaxation
being negligible, equation (6) indicates that there can be no atomic sites with a LDOS Dd(Ef)

smaller than the bulk value. The symmetry of the NMR spectrum and of the sketched T1T
curve imply that there must also be a site-to-site variation of the orbital susceptibility χorb. The
parts (c) and (d) of figure 2 show the relative changes across the spectrum of Dd(Ef) and χorb,
assuming all other parameters in table 1 to be constant.

At the low-field end of the spectrum for somewhat smaller particles,Rh/PVP, the relaxation
rate is less than it is in the bulk; see figures 3(a), (b). Since the orbital relaxation rate should be
unaffected by magnetic fluctuations, this immediately says that at least in part of this sample,
the LDOS is lower than D(Ef )bulk. There is a clear low-temperature enhancement of the
relaxation rate over most of the spectral width, while the spectral shape in figure 3(a) hardly
varies.

For still smaller particles, the spectral shape remains nearly independent of temperature,
but the products T1T vary strongly; see figures 3(c), (d). At fixed temperature, the site-
to-site variation of the relaxation is relatively small, since T1 is nearly constant across the
spectrum. From the lines drawn in figure 3(d) we have at the bulk resonance position
T 2

1 T = 0.63 ± 0.03 s2 K for the two temperatures. This is a strong indication of relaxation
dominated by the term bT 1/2 in equation (18). The relative unimportance of the term aT
implies a drop in D(Ef ) with respect to the bulk value, as has already been seen at the low-
field end in figure 3. Since the spectrum remains centred at the bulk position, there must be a
drop in χorb as well.

The smallest particle sample in figure 1(d) has a low loading and a large spectral width,
which makes it very difficult to perform the relaxation measurements. Some results (not shown)
have been obtained at 80 K. Their large error bars range from the 80 K values in figure 3(b) to
those in figure 3(d). Very qualitatively the results agree with those for the other samples, but
the large error range and the lack of low-temperature data prevent further discussion.

5. Conclusions

The 103Rh NMR of the 3.6 nm particles, Rh/TiO2, is mainly determined by surface effects.
Calculations for slabs exhibiting different Rh surfaces [15, 16] indeed show enhanced values
of D(Ef) at the surface, as suggested by the curve in figure 2(c). From comparison with
figure 2(d), it follows that on sites where Dd(Ef) increases, χorb increases also.
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(a)

7.40 7.44 7.50

0
K (%)
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(b)
8
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(c)
26
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Dd

(Ry-1)

7.42 7.46 7.487.40 7.44 7.50

(d)130

110
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χorb

(10-6)

70

Field/frequency (G/kHz)

Figure 2. The NMR spectrum (a) and value of T1T for several spectral positions (b) in sample
Rh/TiO2, at 20 (full circles) and 80 K (open circles). The line drawn in (b) is meant to suggest that
T1T is independent of temperature, and that it is close to the bulk value (straight dashed lines) in
the centre of the spectrum. The line drawn in (b) can be represented by the variations of Dd(Ef)

and of χorb shown in (c) and (d).

In particles of 3.0 nm, Rh/PVP, the T1-values at 80 K show that at least in a part of the
sample Dd(Ef) is less than the bulk value. The spectrum stays symmetric and centred at
Kbulk, which suggests that where Dd(Ef) diminishes, χorb diminishes also. We believe that
this is a size effect rather than a surface effect, that somehow accompanies the onset of the
size-dependent antiferromagnetic relaxation enhancement. This enhancement is more clearly
seen at 20 K; at 80 K it is decreased by spin fluctuations. For the particles in this sample the
enhancement is probably in between the two limits of equation (16), so the overall temperature
dependence of T1T does not have the structure of equation (18).

The very similar values of T 2
1 T at the two temperatures for the bulk resonance position

in figure 3(d) suggest that here equation (18) might be applicable. However, the considerable
amount of experimental time that would be required has kept us from gathering enough data
to do a T −1

1 = aT + b(T − TN)1/2 analysis, for which an interpretation of a and b would be
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Figure 3. The NMR spectrum (a) and value of T1T for several spectral positions (b) in sample
Rh/PVP, at 20 (full circles) and 80 K (open circles). The lines in (b) are drawn only to connect
points at the same temperature. The temperature effect on the relaxation (but not on the spectrum)
is much larger than in figure 2. At the low-field end in (b) the relaxation is slower than in bulk
Rh (straight dashed lines). Similar data for sample Rh/RP3 are shown in (c) and (d). Here the
site-to-site variation is rather small, but the temperature effect is large.

difficult anyway. To illustrate this point, assume that in figure 3(d) the a-term has half the value
of the bulk relaxation, ≈0.05 s−1 K−1, and furthermore that we are in the δQ → 0 limit of
equation (16). In that case, our two temperature points could be fitted by assuming TN ≈ 5–10
K, and χorb ≈ 0.7χorb,bulk.

The only modest variation of T1 across the spectrum in figure 3(d) suggests that the
relaxation mechanism acts more or less in the same way on all atomic sites: it is related to a
size effect rather than a surface effect. Magnetism has been found in Rh clusters of up to ≈80
atoms, both experimentally [18] and theoretically [15]. Our particles in Rh/PVP and Rh/RP3
are larger (at least several hundreds of atoms), but the tendency towards magnetism now
expresses itself through an enhancement of the antiferromagnetic χ̃(Q) found in calculations
for the bulk [20]. A simple extrapolation of T 2

1 T = 0.63 s2 K found from figure 3(d) towards
higher temperatures says that the spin fluctuations will decrease the spin–lattice relaxation rate
to below the bulk value for temperatures above 120 K. But in principle the antiferromagnetic
character is already present at the unenhanced Pauli level [20] of χP(q), and it should not
disappear on increasing the temperature. It is therefore not necessary that any of the NMR
characteristics of the large-particle sample can be retrieved by increasing the temperature of
the small-particle sample.

In summary, we have presented evidence from 103Rh NMR that rhodium particles of ap-
proximately 2.6 nm diameter show incipient antiferromagnetism below 80 K. We suggest that
this finding is related to the calculated [20] wavevector dependence of χ̃(q) for the bulk, and to
the magnetism found in Rh clusters of less than 80 atoms, both in experiments [18] and in cal-
culations [15]. The incipient antiferromagnetism is accompanied by a lowering of the density
of states at the Fermi level and of the orbital susceptibility with respect to their bulk values.
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